Contact Version française

The ProVal team was stopped at the end of August 2012, and reborn into a new team Toccata
These pages do not evolve anymore, please follow the link above for up-to-date informations about our team.

Publications : Andrei Paskevich

Back
paskevich
[14] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond, and Andrei Paskevich. The Why3 platform, version 0.73. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay, version 0.73 edition, July 2012. https://gforge.inria.fr/docman/view.php/2990/8052/manual-0.73.pdf. [ bib ]
[13] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Reasoning with triggers. Research Report RR-7986, INRIA, June 2012. [ bib | full paper on HAL | .pdf ]
SMT solvers can decide the satisfiability of ground formulas modulo a combination of built-in theories. Adding a built-in theory to a given SMT solver is a complex and time consuming task that requires internal knowledge of the solver. However, many theories can be easily expressed using first-order formulas. Unfortunately, since universal quantifiers are not handled in a complete way by SMT solvers, these axiomatics cannot be used as decision procedures. In this paper, we show how to extend a generic SMT solver to accept a custom theory description and behave as a decision procedure for that theory, provided that the described theory is complete and terminating in a precise sense. The description language consists of first-order axioms with triggers, an instantiation mechanism that is found in many SMT solvers. This mechanism, which usually lacks a clear semantics in existing languages and tools, is rigorously defined here; this definition can be used to prove completeness and termination of the theory. We demonstrate on two examples, how such proofs can be achieved in our formalism.

Keywords: Quantifiers, Triggers, SMT Solvers, Theories
[12] Jean-Christophe Filliâtre, Andrei Paskevich, and Aaron Stump. The 2nd verified software competition: Experience report. In Vladimir Klebanov and Sarah Grebing, editors, COMPARE2012: 1st International Workshop on Comparative Empirical Evaluation of Reasoning Systems, Manchester, UK, June 2012. EasyChair. [ bib | .pdf ]
We report on the second verified software competition. It was organized by the three authors on a 48 hours period on November 8-10, 2011. This paper describes the competition, presents the five problems that were proposed to the participants, and gives an overview of the solutions sent by the 29 teams that entered the competition.

[11] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond, and Andrei Paskevich. The Why3 platform, version 0.72. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay, version 0.72 edition, May 2012. https://gforge.inria.fr/docman/view.php/2990/7919/manual-0.72.pdf. [ bib ]
[10] Claire Dross, Sylvain Conchon, Johannes Kanig, and Andrei Paskevich. Reasoning with triggers. In Pascal Fontaine and Amit Goel, editors, SMT workshop, Manchester, UK, 2012. http://smt2012.loria.fr/. [ bib ]
[9] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. The Why3 platform, version 0.71. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay, version 0.71 edition, October 2011. https://gforge.inria.fr/docman/view.php/2990/7635/manual.pdf. [ bib ]
[8] François Bobot and Andrei Paskevich. Expressing Polymorphic Types in a Many-Sorted Language. In Cesare Tinelli and Viorica Sofronie-Stokkermans, editors, Frontiers of Combining Systems, 8th International Symposium, Proceedings, volume 6989 of Lecture Notes in Computer Science, pages 87-102, Saarbrücken, Germany, October 2011. [ bib | .pdf ]
[7] François Bobot, Jean-Christophe Filliâtre, Claude Marché, and Andrei Paskevich. Why3: Shepherd your herd of provers. In Boogie 2011: First International Workshop on Intermediate Verification Languages, pages 53-64, Wroclaw, Poland, August 2011. [ bib | .pdf ]
Why3 is the next generation of the Why software verification platform. Why3 clearly separates the purely logical specification part from generation of verification conditions for programs. This article focuses on the former part. Why3 comes with a new enhanced language of logical specification. It features a rich library of proof task transformations that can be chained to produce a suitable input for a large set of theorem provers, including SMT solvers, TPTP provers, as well as interactive proof assistants.

[6] François Bobot, Jean-Christophe Filliâtre, Claude Marché, Guillaume Melquiond, and Andrei Paskevich. The Why3 platform. LRI, CNRS & Univ. Paris-Sud & INRIA Saclay, version 0.64 edition, February 2011. http://why3.lri.fr/. [ bib ]
[5] François Bobot and Andrei Paskevich. Expressing Polymorphic Types in a Many-Sorted Language, 2011. Preliminary report. http://hal.inria.fr/inria-00591414/. [ bib ]
[4] Évelyne Contejean, Pierre Courtieu, Julien Forest, Andrei Paskevich, Olivier Pons, and Xavier Urbain. A3PAT, an Approach for Certified Automated Termination Proofs. In Éric Cariou, Laurence Duchien, and Yves Ledru, editors, Journées nationales du GDR-GPL, Pau, France, March 2010. GDR GPL. [ bib ]
[3] Évelyne Contejean, Pierre Courtieu, Julien Forest, Andrei Paskevich, Olivier Pons, and Xavier Urbain. A3PAT, an Approach for Certified Automated Termination Proofs. In John P. Gallagher and Janis Voigtländer, editors, Partial Evaluation and Program Manipulation, pages 63-72, Madrid, Spain, January 2010. ACM Press. [ bib | DOI | Abstract ]
[2] Andrei Paskevich. Algebraic types and pattern matching in the logical language of the Why verification platform (version 2). Technical Report 7128, INRIA, 2010. http://hal.inria.fr/inria-00439232/en/. [ bib | full paper on HAL ]
[1] Andrei Paskevich. Algebraic types and pattern matching in the logical language of the Why verification platform. Technical Report 7128, INRIA, 2009. http://hal.inria.fr/inria-00439232/en/. [ bib | full paper on HAL ]

Back
This page was generated by bibtex2html.