The ProVal team was stopped at the end of August 2012, and reborn into a new team Toccata

## Maximal sum in a matrix

Authors: Jean-Christophe Filliâtre

Tools: Why3

```
(* Given a nxn matrix m of nonnegative integers, we want to pick up one element
in each row and each column, so that their sum is maximal.

We generalize the problem as follows: f(i,c) is the maximum for rows >= i
and columns in set c. Thus the solution is f(0,{0,1,...,n-1}).

f is easily defined recursively, as we have

f(i,c) = max{j in c} m[i][j] + f(i+1, C\{j})

As such, it would still be a brute force approach (of complexity n!)
but we can memoize f and then the search space decreases to 2^n-1.

The following code implements such a solution. Sets of integers are
provided in theory Bitset. Hash tables for memoization are provided
in module HashTable (see file hash_tables.mlw for an implementation).
Code for f is in module MaxMatrixMemo (mutually recursive functions
maximum and memo).
*)

theory Bitset "sets of small integers"

use import int.Int

constant size : int (* elements belong to 0..size-1 *)

type set

(* membership
[mem i s] can be implemented as [s land (1 lsl i) <> 0] *)
predicate mem int set

(* removal
[remove i s] can be implemented as [s - (1 lsl i)] *)
function remove int set : set

axiom remove_def1:
forall x y: int, s: set.
mem x (remove y s) <-> x <> y /\ mem x s

(* the set {0,1,...,n-1}
[below n] can be implemented as [1 lsl n - 1] *)
function below int : set

axiom below_def:
forall x n: int. 0 <= n <= size ->
mem x (below n) <-> 0 <= x < n

function cardinal set : int

axiom cardinal_empty:
forall s: set. cardinal s = 0 <-> (forall x: int. not (mem x s))

axiom cardinal_remove:
forall x: int. forall s: set.
mem x s -> cardinal s = 1 + cardinal (remove x s)

axiom cardinal_below:
forall n: int.  0 <= n <= size ->
cardinal (below n) = if n >= 0 then n else 0

end

module HashTable

use import option.Option
use import int.Int
use import map.Map

type t 'a 'b model { mutable contents: map 'a (option 'b) }

function ([]) (h: t 'a 'b) (k: 'a) : option 'b = Map.get h.contents k

val create (n:int) : t 'a 'b
requires { 0 < n } ensures { forall k: 'a. result[k] = None }

val clear (h: t 'a 'b) : unit writes {h}
ensures { forall k: 'a. h[k] = None }

val add (h: t 'a 'b) (k: 'a) (v: 'b) : unit writes {h}
ensures { h[k] = Some v /\ forall k': 'a. k' <> k -> h[k'] = (old h)[k'] }

exception Not_found

val find (h: t 'a 'b) (k: 'a) : 'b reads {h}
ensures { h[k] = Some result } raises { Not_found -> h[k] = None }

end

module MaxMatrixMemo

use import int.Int
use import int.MinMax
use import map.Map
use import ref.Ref

constant n : int
axiom n_nonneg: 0 <= n

use import Bitset
axiom integer_size: n <= size

constant m : map int (map int int)
axiom m_pos: forall i j: int. 0 <= i < n -> 0 <= j < n -> 0 <= m[i][j]

predicate solution (s: map int int) (i: int) =
(forall k: int. i <= k < n -> 0 <= s[k] < n) /\
(forall k1 k2: int. i <= k1 < k2 < n -> s[k1] <> s[k2])

predicate permutation (s: map int int) = solution s 0

type mapii = map int int
function f (s: map int int) (i: int) : int = m[i][s[i]]
clone import sum.Sum with type container = mapii, function f = f

lemma sum_ind:
forall i: int. i < n -> forall j: int.
forall s: map int int. sum s[i <- j] i n = m[i][j] + sum s (i+1) n

use import option.Option
use HashTable as H

type key = (int, set)
type value = (int, mapii)

predicate pre (k: key) =
let (i, c) = k in
0 <= i <= n /\ cardinal c = n-i /\ (forall k: int. mem k c -> 0 <= k < n)

predicate post (k: key) (v: value) =
let (i, c) = k in
let (r, sol) = v in
0 <= r /\ solution sol i /\
(forall k: int. i <= k < n -> mem sol[k] c) /\
r = sum sol i n /\
(forall s: map int int.
solution s i -> (forall k: int. i <= k < n -> mem s[k] c) ->
r >= sum s i n)

type table = H.t key value

val table: table

predicate inv (t: table) =
forall k: key, v: value. H.([]) t k = Some v -> post k v

let rec maximum (i:int) (c: set) : (int, map int int) variant {2*n-2*i}
requires { pre (i, c) /\ inv table }
ensures { post (i,c) result /\ inv table }
= if i = n then
(0, const 0)
else begin
let r = ref (-1) in
let sol = ref (const 0) in
for j = 0 to n-1 do
invariant {
inv table /\
(  (!r = -1 /\ forall k: int. 0 <= k < j -> not (mem k c))
\/
(0 <= !r /\ solution !sol i /\
(forall k: int. i <= k < n -> mem !sol[k] c) /\
!r = sum !sol i n /\
(forall s: map int int.
solution s i -> (forall k: int. i <= k < n -> mem s[k] c) ->
mem s[i] c -> s[i] < j -> !r >= sum s i n)))
}
if mem j c then
let (r', sol') = memo (i+1) (remove j c) in
let x = m[i][j] + r' in
if x > !r then begin r := x; sol := sol'[i <- j] end
done;
assert { 0 <= !r };
(!r, !sol)
end

with memo (i:int) (c: set) : (int, map int int) variant {2*n-2*i+1}
requires { pre (i,c) /\ inv table }
ensures { post (i,c) result /\ inv table }
= try  H.find table (i,c)
with H.Not_found -> let r = maximum i c in H.add table (i,c) r; r end

let maxmat ()
ensures { exists s: map int int. permutation s /\ result =  sum s 0 n }
ensures { forall s: map int int. permutation s -> result >= sum s 0 n }
= H.clear table;
assert { inv table };
let (r, _) = maximum 0 (below n) in r

end
```